

WA chapter monthly talk Wednesday, 17-th of September 2014

Analytical modelling of groundwater wells and well systems: how to get it right?

Anastasia Boronina¹, Leonid Sindalovskiy² Anton Nikulenkov³

¹Independent Hydrogeologist, Perth WA ²Principal Research Scientist, Institute of Environmental Geosciences, Russian Academy of Sciences ³Senior Research Scientist, Institute of Environmental Geosciences, Russian Academy of Sciences

Contact: Anastasia.Boronina@pangeawater.com.au tel: 0478 633 429

Why talk about pump tests interpretation?

Often this is the only data available for water supply and dewatering Obtaining aquifer test data is expensive and time-consuming

- n x 10,000 n x 100,000 AUD average test cost
- Weeks of planning, drilling and testing in the field.

But..

Interpretation time – hours. We attempt to do it quickly and save money

Better interpretation – more reliable groundwater predictions!

IAH 2013 International Congress paper: Todd Hamilton and Milo Simonic "Reducing uncertainty in test pumping analysis"

Outline

 Common pitfalls in pump test interpretations and case studies

- Analytical method for well systems design
- MODFE and RADFLOW numerical codes for solving 2D axis-symmetrical numerical flow models

Software

Aqtesolv 4.5 HydroSOLVE, Inc, http://www.aqtesolv.com/ Feflow 6.1 DGI-WASY GMbH, www.feflow.com Ansdimat 8.5

Institute of Environmental Geosciences of the Russian Academy of Sciences, http://www.ansdimat.com/

ANSDIMAT – pump test interpretation by curve-matching

File View Choose Analysis Tools Model Language Window Help Conceptual scheme Conceptual scheme Conceptual scheme Conceptual scheme Conceptual scheme Options Boarday condion Matching parameters Parameters Vertical hydraulic conductivity, m/day Conceptual scheme Q Conceptual scheme Q Q Parameters Vertical hydraulic conductivity, m/day Good Vertical hydraulic conductivity, m/day Good Vertical hydraulic conductivity, m/day Good Storage coefficient, Cancel Apply Help Neurosci draudown in observation well (average) Help Neurosci draudown in observation well (average) Help Description Recalculate DK Cancel Apply Help Neurosci draudown in observation well (average) Help Neurosci draudown in observation well Recalculate DK	ANSDIMAT v.8.4.3 [I:\Ansdimat-work\models\gate	way_ansdimat1.oat]		
Choose conceptual scheme Matching parameters Conceptual scheme Information Conceptual scheme Information Conceptual scheme Matching parameters Conceptual scheme Information Conceptual scheme Matching parameters Conceptual scheme Information Conceptual scheme Information Conceptual scheme Matching parameters Conceptual scheme Information Conceptual scheme Information Conceptual scheme Information Conceptual scheme Matching parameters Conceptual scheme Information	File View Choose Analysis Tools Model La	nguage Window Help		
Choose conceptual scheme Information Conceptual scheme Bounday conditor Conceptual scheme Conceptual scheme				
Conceptual scheme Internation Conceptual scheme Bounday condion Unconfined aquiler Bounday condion Image: Strain Strai	Choose conceptual scheme			
Conceptual scheme: Boundary condition Unconfined aquifer: Indocended Indocended Indocended In	Conceptual scheme	1 Informa	ation	
Parameters View Options Recalculate $u = u = u = u = u = u = u = u = u = u =$	Conceptual scheme: Unconfined aquifer	Boundary condition:	latching parameters	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Parameters View Options	
$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		~	· · · · · · · · · · · · · · · · · · ·	Recalculate
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.8 Horizontal hydraulic conductivity, m/day	UCODE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- <u>¥¥</u> ¥¥¥¥	<u></u>	0.0001 Storade coefficient -	from UCODE
$z_{w1} = z_{w2} = z_{w1} = z$		z_{p2}	0.25 Specific yield -	Clear
S, S_{y}, k_{z} k_{r} $k_$				
Solver:	k		☐ Isotropic aquifer	ОК
Image: Cancel International Concentration of the second concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration of the second concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Will (average) Image: Cancel International Concentration Concentration Concentration Concentration Concentration Concentration C	$S, S_y \xrightarrow{n_z} I$	*87		Course 1
Solver: Apply Image: Solver: Neuman: drawdown in observation well (average) Image: Solver: Neuman: drawdown in observation well Image: Solver: Image: Solver:	$ \begin{bmatrix} \cdot & \kappa_r \\ \cdot & \cdot & \cdot \end{bmatrix} $	$\bigotimes^{\ell_{W}}$		Lancer
Image: Solver. Neuman: drawdown in observation well (average) Image: Help Image: Neuman: drawdown in observation well (average) Image: Help Neuman: drawdown in observation well (average) Image: Help Neuman: drawdown in observation well (average) Image: Help Neuman: drawdown in observation well Image: Help	· · · · · · · · · · · · · · · · · ·	-8*. • . • .	Solver	Apply
P Neuman: drawdown in observation well (average) Neuman: drawdown in piezometer Boulton: drawdown in observation well Boulton: drawdown in piezometer Boulton: drawdown in observation well	· · · · · · · · · · · · · · · · · · ·		Neuman: drawdown in observation well (average)	Help
Neuman: drawdown in piezometer Boulton: drawdown in observation well Boulton: drawdown in observation well Moench: drawdown in piezometer Paulton: drawdown in piezometer Boulton: drawdown in piezometer Paulton: drawdown in piezometer Boulton: drawdown in piezometer Paulton: drawdo			Neuman: drawdown in observation well (average)	
Boulton: drawdown in observation well Moench: drawdown in piezowation well Moench: drawdown in piezowation well Powlton: drawdown in piezowation well			Neuman: drawdown in piezometer	
OK Moench: drawdown in observation well OK Reviter well (2)	1		Boulton: drawdown of the water table	
OK Moenten, diawadown in piezoniete			Moench: drawdown in observation well	
boulton, drawdown in observation weir (2)		ОК	Boulton: drawdown in observation well (2)	
Moench: drawdown in observation well (finite diameter of pumping well)			Moench: drawdown in observation well (finite diameter of pumping well)	

ANSDIMAT users

ANDISMAT is officially registered and included in the Russian State Register of computer codes. Certificate #2009614366

Common pitfalls in pump test interpretation by analytical models

- Interpreting unconfined aquifer response by "confined" analytical solution for a wrong time-drawdown interval
- Not accounting for well storage
- Interpreting skin-effect as an aquifer response

Drawdown in pumping well with well storage
 Drawdown in pumping well without well storage
 Cooper-Jacob approximation

Short-time pump tests – high risk of errors !!

Example 1 – Fitzroy River Catchment Test borehole for water supply

Depth (m bgl)	Graphic + Stratigraphy	Lithological Description	Field Notes	Bore Co	nstruction
0		ALLUVIUM: pale brown, silt, sand and gravel, angular to rounded			+0.2-5m: 12" diameter steel collar
10		SHALE: brown, pale grey, extremely weathered, laminar texture SHALE: grey, dark grey, moderately to very		100000	0-5m: 14" diameter air blade
20		Weathered, lamin ar texture SHALE: dark grey, slightly weathered, laminar texture	17m: wet sample after rod change	CEOCLOC DEFECTION	
30			29m: minor groundwater intersect, 0=0.1L/s 35m: wet sample after rod change	active brack	0.5-98: backfill
40			41m: wet sample after rod change	obiotiop opiotiop	
50			53m: wet sample after rod change		+0.2-107m: 175mm ND class 12 uPVC blank casing
⁶⁰		SHALE: dark grey, fresh, laminar texture; minor sandstone bands	59m: wet sample alter rod change 65m: wet sample alter		5-149: 12" diameter DC hammer
70			71m: dry	officients officients	
80			77m: wet sample after rod change 83m: wet sample after	rotrote rotrote	
90			89m: wet sample after rod change	000000	
100		SANDSTONE: pale grey, fresh, subrounded,	95m: wet sample after rod change 101m: wet sample after rod change		98-100m: bentonite seal
110		SHALE: dark grey, fresh, laminar texture; minor sandstone bands SANDS TONE: pale grey, fresh, subrounded, moderately.cemented, fine grained, quartz	107m: wet sample after rod change 108m: gro undwater		
120		Interbedded SANDSTONE and SHALE: pale grey, fresh, fine grained, moderately cemented sandstone and dark grey, laminar shale SANDSTONE: pale grey, fresh, subrounded,	113m: Q=3L/s, EC=1.24mS/cm@34.1 C, pH=8.34 119m: Q=3L/s		100-149m: gravel pack (+1.6 - 3.2mm)
130		Incredentely cemented, fine grained, quartz Interbedted SANDSTONE and SHALE: pale grey, fresh, fine grained, moderately cemented gandstone and dark grey, laminar shale SANDSTONE: pale grey, fresh, subrounded, poorly	EC=1.17mS/cm@33.4 C, pH=8.33 125m: Q=5L/s, EC=0.83mS/cm@34.4 C, oH=8.38		107-149m: 175mm ND class 12 uPVC slotted ca sing
140		commented, fine grained, quartz Interbedied SANDSTONE and SHALE: pale grey, fresh, fine grained, moderately cemented sandstone and dark grey, laminar shale SANDSTONE: pale grey, feeth subcounded produ-	C, pH=0.30 131m: Q=5L/s, EC=0.75mS/cm@34.9 C, pH=8.39 137m: Q=5L/s,		second on any
150	111144	cemented, fine grained, quartz	EC=0.72mS/cm@35.2 C, pH=8.34 143m: Q=6.7L/s, EC=0.72mS/cm@35.5 C, pH=8.35		149m: end of hole
160			149m: Q=10L/s, EC=0.59mS/cm@35.3		

Profile:

0-100 m bgl – confining or semiconfining shale 100-150 m bgl – Poole Sandstone

Poole sandstone – a high yielding aquifer, good water quality (TDS < 1 g/L). It is believed to have a thickness of around 250 m

Borehole: Total depth – 150 m Screen interval – 100-150 m bgl

48-hour constant rate pump test. Pumping rates were recorded at hourly intervals

Example 1 – original interpretation

K=0.14 m/d or less (depending on assumed effective thickness).

The value is based on the first interval that reflects well bore storage and skin-effect, but not the aquifer!

Table 7: Summary of Aquifer Properties

Test Type	Transmissivity (m²/d)	Aquifer Thickness (m)	Hydraulic Conductivity (m/d)	Method
Constant Rate	6.034	42	0.14	Cooper-Jacob (1946)
Recovery	10.53	42	0.25	Theis (1935)

Example 1 – corrected interpretation

Algorithm WTAQ3 (Moench, 1997):

Moench A.F. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer // Water Resources Research. 1997. Vol. 33, N 6. P. 1397–1407.

Example 2 – Pilbara Test pumping for mine dewatering

Well	Distance from Test Well, m	Total Depth, m	Slotted Interval, m bgl	Lithology
Pumping Well	-	45	12-45	Alluvium, Hardcap, Ore Zone & BIF
Obs Well	15.2	32	20-32	Alluvium, Hardcap, Ore Zone

Example 2 – original interpretation

124 m/d for early time and 38 m/d for late time.

The same results for pumping and observation wells

"Early time data may represent the aquifer while the late time data may represent the underlying shales"

Conclusion: The aquifer is highly heterogeneous. Because of this, the test results are not applicable, so the model used different values

Recovery Test Observation Constant Rate Test Transmissivity Test Transmissivity Storativity Estimate Well Well (m²/d) (m²/d) a a a Pumping 4,090 (early); 1,240 (late) 5,450 6.06 x 10⁻⁴ (early); 1.79 x 10⁻¹ (late) Theis CB471T 4,020 (early); 1,190 (late) Theis 6.14 x 10⁴(early); 1.95 x 10⁻¹ (late) Cooper-Obs 3,910 (early) 1,130 (late) Cooper-Jacob Jacob a. Insufficient drawdown induced in observation well to enable analysis Note: The test pumping analysis confirms the heterogeneity of both the alluvium and mineralised Marra Mamba. but does not provide reasonable estimates of regional hydraulic properties. Actual values used in the numerical

modelling are described in Section 6.

Unconfined aquifer – three stages of drawdown

Example 2 – corrected interpretation

Conceptual scheme partially penetrating well in an unconfined aquifer

Algorithm: Moench (1997):

Kh = 26 m/d - 36 m/d, rather homogeneous aquifer, though lower-permeability zone or boundary may be present at distance

Marra Mamba heterogeneity Is it really so high? Or may be just an artefact of interpretation?

Aquifor	T	1	K	2	9	3	No. of
Aquilei	Range	Avg.	Range	Avg.	Range	Avg.	Tests
Tertiary Detritals	59–210	135	4.2-5.3	4.8	1.3x 10 ⁻³ - 4.2 x 10 ⁻⁴	8.6 x 10⁴	2
Oakover Fmn.	3460 5505	4483	115–167	141	3.3 x 10 ⁻³ - 4.4 x 10 ⁻⁴	7.87 x 10 ⁻³	2
Mineralised Marra Mamba Emn.	1520– 6955	4046	11- 311	226	3.3x 10 ⁻⁵ − 7.9 x 10 ⁻³	5.01 x 10 ⁻³	3
Non- mineralised Marra Mamba Fmn.	18–773	287	1.7–32	13	-	1.7 x 10 ⁻³	3
Marra Mamba Fmn. (all ⁴)	222- 5797	2358	11–386	100	1.4 x 10 ⁻⁴ - 7.7 x 10 ⁻³	2.03 x 10 ⁻³	14

Table 6 – Aquifer Test Results (by Aquifer)

1 Transmissivity (m²/day)

2 Hydraulic Conductivity (m/day)

3 Aquifer Storativity (dimensionless) (not assessed where no monitoring bore data are available)

4 All includes both the mineralised and non mineralised Marra Mamba. However, the bore may not screen the entire non-mineralised sequence.

FMG, 2010. Hydrogeological Assessment for the Christmas Creek Water Management Scheme (http://www.fmgl.com.au/community/Environment/Approval_Publications/Christmas_Creek_WMS)

Case study 3 – Gateway WA Pump testing for dewatering

	7 <mark></mark>

- Bassendean Sands Guilford Clays Guilford Sands
- Limestone and carbonate gravels (Mirrabooka Aquifer)
- 2-3 m drawdown for some sites
- High yielding aquifer at 20 m bgl
- Up to 6 months of dewatering is required

We acknowledge MRWA for opportunity to conduct this study and present the results

Case study 3 – Gateway WA Pump test settings

- Three pumping wells shallow (10.5 mbgl), intermediate (15.5 mbgl) and deep (30 mbgl);
- Average pumping rates: 6 L/s (deep), 3 L/s (intermediate) and 1.3 L/s (shallow);
- 48 hour pump tests + recovery;
- 11 monitoring wells at distances 2–200 m;
- Screen lengths: 3 m (monitoring wells);
 6m, 6m and 12m (pumping wells);
- Screen intervals: all horizons;
- Pressure transducers in all pumping and observation boreholes; digital flowmeters

Case study 3 – original interpretation

FEFLOW model

CHALLENGES

- Non-uniquiness
- Requirements for fine vertical discretisation to accommodate various screen and pumping intervals
- Numerical oscillations
- Results are sensitive to numerical parameters (residual water depths, slice location etc.)
- Not sensitive to Sy and K of Mirrabooka
- Sensitivity analysis is subjective

RESULTS

ulic He	bed																												
"Ţ	-					-	-	-	-			-	-				1			-	-				-				
15-	-	1	+		+	+		+	+	-	-	-	-	-	-	-	-		-	-	-			-				_	-
. t	1	1-	1-	1	-	1	1	+	+	1	Ť	1	1	1		-	1	1		11	1	1	† †	1	11		11		-
٦.	1	A	1			_			1		1		_				1				_						_	_	
	-1	17	4-		-	-	-		1		-	-					1				-		1		-				+
1		1	1			-	1-1	+	+		-+	+	+	-			-			+++	-	-		-			+-+		+
"1		11	1						1		T						1			11									1
-	_	11	1		_	1	~		.l				-				1			1.1							-		1
÷	+	1-1	-	1	7	+	17	-	1		-+-	+-		-			+			+	+		+ +						+
5-	1	N-	1-		-	+	1	-	1	4	T	5	t			1	1		-	11	1	+			+		17	2	t
.1		11									1		1	-	-	1	Ļ	-	~	T	-	1		1	1	Y	1	_	T
1	-	11	A		_		-							_			-	-			-		1	-			_	_	-
u-	-	H	++		-	-	-	-	+			+		-			+			++	-	+	-+		+				+-
. 1	-	-1	1		-7	h		-	-		1						1			11	-	-	1	1	1		-	-	1
۳1		1	1		M	100	17	4-	1		1	1					1			1		1		1				_	
u-	+		1-	1	14	4	4	A	¥		-+-	+	+	-		-	+			+	-	+	+-+		+				+
ा	-		1		H	-	wy	×+1	17	-	÷	-		-			+	-		++	-	+		A		-	11	5	7
17			۲Y	11	m	1	1	A	1		1	A	5			1	1		-	1	1	1	11	14.	10	17	W	111	1
»-	-		1.	V			1.	Ľ	MA	A	1	14	1	-	1	1/	1	5	JV	44	t	1		A	1º	11	1.	1	14
1	-		+				3	-	1	M	1	.,)	5	N	v.	+	P	٧.	V-	- V	+	A	-	11		V	MA.C	JW	1
-	+		+ŀ	11	-	+		+	1		1	ih	1	ſ		٦h	1	1	1	1-1	A V	4	M	44	M	1	44	41	1
.1				V					1h	Δ.	r	1	1		1	T	T	. 1	1.	41	T	1	1	1 T			1	N	1
1	-		1.		_		1		14	M	+	1	14	1	۴V	1	11	11	VI-	-V.	1	A		1	1	V	_	-M	1
×-						-)	-	1	-	-14	r		1.	4			++	-1	6	-			V			+
- 1											1+		-1			¥\	d			++	×	-+%	r						+

Shallow well: example of oscillations

Description	K horiz	ontal	K vertic	Sy	
	Best	Accept	Best fit	Accept	range
	fit	able fit		able fit	
Upper sands	7	5-15	1.75	1.8-3.5	0.1-0.3
(Bassendean and					
GF formations)					
Sands with silt and	1	0.5-1	0.15	0.15-	0.1-0.3
clay				0.3	
Lower sands of	5.2	5.2-10.4	2	1-4	0.1-0.3
Guildford formation					
(Mirrabooka	20	15-20	7.5	5-10	0.1-0.3
Aquifer)					18

Case study 3 – corrected interpretation, shallow pumping well

Conceptual scheme partially penetrating well in an unconfined leaky aquifer (Hantush solution)

19

Case study 3 – corrected interpretation, intermediate pumping well

Case study 3 – corrected interpretation, deep pumping well

Case study 3 – corrected results and updated profile

Original Results

Description	K horizonta		K vertical	Sy		
	Best fit	Acceptable	Best fit	Acceptable	Acceptable	
Upper sands (Bassendean and GF formations)	7	5-15	1.75	1.8-3.5	0.1-0.3	
Sands with silt and clay	1	0.5-1	0.15	0.15-0.3	0.1-0.3	
Lower sands of Guildford formation	5.2	5.2-10.4	2	1-4	0.1-0.3	
(Mirrabooka Aquifer)	20	15-20	7.5	5-10	0.1-0.3	

Updated Results

Higher permeability

- Upper Sands and Clays 0.4 m/d
- Lower sands up to 4 m/d, Sy is between 0.1 and 0.3
- Anisotropy coefficient is up to 10 (not important)
- Mirrabooka aquifer has K similar to that of lower sands

Analytical models for well system design. Principle of Superposition

Software

- EXCEL,
- EXCEL+ any pump test interpretation software,
- WINFLOW*,
- AMWELLS

S=S1+S2

Standard numerical codes are not modelling drawdown in pumping wells correctly because:

- Grid/element size is not suitable
- Equations for well hydraulics, skin-effect, well and screen diameters etc. are not included

Open pit dewatering - wellfield design in EXCEL (gold deposit in CAF)

Superposition formula:

$$s = \frac{1}{T} \sum_{i=1}^{n} Q_i f_i$$

- s drawdown at any well or at any other point
- T- transmissivity;
- Q pumping rate of a single well;

fi - a function that depends on boundary conditions and well parameters

A linear pit boundary, a linear contour of dewatering wells and a linear contour of recharge at a distance *R* from a drainage line:

$$f_i = 0.367 \times \lg\left(\frac{R}{r}\right)$$

r – distance from a pumping well R - Radius of Influence

$$R = 1.5\sqrt{\frac{T \times t}{S}}$$

S - storage coefficient;

t – time from the beginning of pumping

Results: drawdown at a pit contour and inside each well for a specific Q. Helps to decide on number of boreholes and distances between them

ANSDIMAT

X 🖬 🗕 🛞 🛛

ANSDIMAT

ANSQUICK

AMWELLS

ANSRADIAL

AMWELLS: Model geometry, well locations

AMWELLS:

Input of well systems – choice of layouts

AMWELLS: Calculation of drawdown in each well

AMWELLS: Piezometric maps and hydrogeological cross-sections

AMWELLS: Hydrodynamic boundaries

Choice of Dirichlet, Neumann or Cauchy boundaries (straight line boundaries only)

AMWELLS: Anisotropy

AMWELLS: Heterogeneity

AMWELLS: 3D animation movie

Case study 4: Water supply borefield Leningrad – St-Petersburg, 1946–2006

Case study 4: model calibration and predicted drawdowns, 1946–2006

Model Language

BBB

= 222883.3

Y = 81094.3 Z = 0

R = 138755

Xc = 86174.88 Yc = 104837.8

BBBBB

- 0 ×

k-m So

y 1 ÷

Time, day

Exit

WHP

Particle tracking

36

Well catchments (wellhead protection areas)

Impact of boundaries and heterogeneity on well catchments

ANSRADIAL - finite-difference simulator of axisymmetric groundwater flow

...when hydrogeological conditions are too complex to be modelled analytically.

Typical applications: aquifer tests with simultaneous pumping from different horizons in multilayer aquifers

Pre- and postprocessor for 2-D numerical modelling codes:

- MODFE (USGS)
- RADFLOW (G.S. Johnson, D.M. Cosgrove, Idaho Water Resources Research Institute).

Thank you for attention!

confined and unconfined aquifer, aquifer heterogeneous on the horizontal plane, leaky and multilayer (stratified) aquifer systems. Analytical solutions for fractured-porous aquifers of various structure, solutions for aquifers with profile and plan anisotropy, sloping aquifers and aquifers of varying thickness are included.

meilru

75