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Why talk about pump tests 

interpretation?

Often this is the only data available for water supply and dewatering 

Obtaining aquifer test data is expensive and time-consuming

• n x 10,000 – n x 100,000 AUD – average test cost

• Weeks of planning, drilling and testing in the field. 

But..

Interpretation time – hours. We attempt to do it quickly and save money

Better interpretation – more reliable 

groundwater predictions!
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IAH 2013 International Congress paper: Todd Hamilton and Milo Simonic “Reducing 

uncertainty in test pumping analysis”



Outline

• Common pitfalls in pump test interpretations 

and case studies

• Analytical method for well systems design

• MODFE  and RADFLOW  numerical codes for 

solving 2D axis-symmetrical numerical flow 

models
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Software
Aqtesolv 4.5
HydroSOLVE, Inc, http://www.aqtesolv.com/

Feflow 6.1
DGI-WASY GMbH,  www.feflow.com

Ansdimat 8.5
Institute of Environmental Geosciences of the Russian Academy of Sciences, 

http://www.ansdimat.com/
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ANSDIMAT – pump test interpretation by 

curve-matching 
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ANSDIMAT users

ANDISMAT is officially registered and included in the Russian State 

Register of computer codes. Certificate #2009614366



Common pitfalls in pump test 

interpretation by analytical models

• Interpreting unconfined 

aquifer response by 

“confined” analytical 

solution for a wrong 

time-drawdown interval

• Not accounting for well 

storage

• Interpreting skin-effect 

as an aquifer response

Drawdown in pumping well with well storage

Drawdown in pumping well without well storage

Cooper-Jacob approximation

Short-time pump tests – high risk of errors !!
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Example 1 – Fitzroy River Catchment

Test borehole for water supply 
Profile:

0-100 m bgl – confining or semi-

confining shale

100-150 m bgl – Poole Sandstone

Poole sandstone – a high yielding 

aquifer, good water quality (TDS < 1 

g/L). It is believed to have a thickness 

of around 250 m

Borehole:

Total depth – 150 m

Screen interval – 100-150 m bgl

48-hour constant rate pump test. Pumping 

rates were recorded at hourly intervals
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Example 1 – original interpretation

K=0.14 m/d or less 

(depending on assumed 

effective thickness). 

The value is based on 

the first interval that 

reflects well bore storage 

and skin-effect, but not 

the aquifer!
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Moench A.F. Flow to a well of finite diameter in a homogeneous, anisotropic water table 

aquifer // Water Resources Research. 1997. Vol. 33, N 6. P. 1397–1407.

Well-bore storage parameter:

Well-bore skin parameter:

Algorithm WTAQ3 (Moench, 1997):

Conceptual scheme
partially penetrating well in a 

thick confined aquifer, 

Well-bore storage and skin-effect 
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Example 1 – corrected interpretation
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Example 2 – Pilbara

Test pumping for mine dewatering

Unconfined aquifer

Profile:

• Alluvium 

• Ore Zone 

(aquifer)

• BIF

Well Distance 

from Test 

Well, m

Total 

Depth, m

Slotted 

Interval, m 

bgl

Lithology

Pumping Well - 45 12-45 Alluvium, Hardcap, 

Ore Zone & BIF

Obs Well 15.2 32 20-32 Alluvium, Hardcap, 

Ore Zone

TEST WELL
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Example 2 – original interpretation
124 m/d for early time 

and 38 m/d for late time. 

The same results for 

pumping and 

observation wells

“Early time data may 

represent the aquifer 

while the late time data 

may represent the 

underlying shales”

Conclusion:

The aquifer is highly 

heterogeneous. 

Because of this, the 

test results are not 

applicable, so the 

model used different 

values

Pumping well

Observation 

well

Pumping

Obs
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Unconfined aquifer –

three stages of drawdown
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Slower increase of drawdown
effect similar to recharge, high 
vertical flow component

Theis curve
High storage - Sy

Well storage

Time Log scale

Theis curve
Low storage - Ss



Pumping well

Observation well

Example 2 – corrected interpretation

Kh = 26 m/d - 36 m/d, rather homogeneous aquifer, though lower-permeability 

zone or boundary may be present at distance

Conceptual scheme
partially penetrating well in an 

unconfined aquifer

Algorithm: Moench (1997):

K=36.3 m/d

Ss=7.2E-5 1/m

Sy=0.104

Rc=0.15 m

K=26.1 m/d

Ss=1.8E-4 1/m

Sy=0.16

Rc=0.1 m

14



Marra Mamba heterogeneity 
Is it really so high? 

Or may be just an artefact of interpretation?

FMG, 2010. Hydrogeological Assessment for the Christmas Creek Water Management Scheme 

(http://www.fmgl.com.au/community/Environment/Approval_Publications/Christmas_Creek_WMS)
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Bassendean Sands

Guilford Clays

Guilford Sands

Limestone and carbonate gravels 

(Mirrabooka Aquifer)

Case study 3 – Gateway WA

Pump testing for dewatering

• 2-3 m drawdown for some sites

• High yielding aquifer  at 20 m bgl

• Up to 6 months of dewatering is required 

16We acknowledge MRWA for opportunity to conduct this study and present the results



• Three pumping wells – shallow (10.5 

mbgl), intermediate (15.5 mbgl) and deep 

(30 mbgl);

• Average pumping rates: 6 L/s (deep), 3 L/s 

(intermediate) and 1.3 L/s (shallow);

• 48 hour pump tests + recovery;

• 11 monitoring wells at distances 2–200 m;

• Screen lengths: 3 m (monitoring wells); 

6m, 6m and 12m (pumping wells);

• Screen intervals: all horizons;

• Pressure transducers in all pumping and 
observation boreholes; digital flowmeters

Case study 3 – Gateway WA

Pump test settings
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Case study 3 – original interpretation

FEFLOW model

Description K horizontal K vertical Sy

Best 

fit

Accept

able fit

Best fit Accept

able fit 

range

Upper sands 

(Bassendean and 

GF formations)

7 5-15 1.75 1.8-3.5 0.1-0.3

Sands with silt and 

clay

1 0.5-1 0.15 0.15-

0.3

0.1-0.3

Lower sands of 

Guildford formation

5.2 5.2-10.4 2 1-4 0.1-0.3

(Mirrabooka 

Aquifer)

20 15-20 7.5 5-10 0.1-0.3

Three 

models. Each 

model: 13 

numerical 

layers and 4 

conceptual 

layers

CHALLENGES
• Non-uniquiness

• Requirements for fine vertical discretisation to 

accommodate various screen and pumping 

intervals

• Numerical oscillations

• Results are sensitive to numerical parameters 

(residual water depths, slice location etc.)

• Not sensitive to Sy and K of Mirrabooka 

• Sensitivity analysis is subjective

RESULTS

Shallow well: example of 

oscillations
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m=70

m=50

Case study 3 – corrected interpretation, 
shallow pumping well

Conceptual scheme
partially penetrating well in an 

unconfined leaky aquifer 

(Hantush solution) K=0.4 m/d

B=0.116

K=0.4 m/d

B=0.116
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Case study 3 – corrected interpretation, 
intermediate pumping well

P
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_
0
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7
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30 m

52 m

16 m

8 m

LT_037b

Kr=0.6 m/d, Kz=0.06 

m/d

Sy=0.3

Solution: Moench -

drawdown in obs well

PW- intermediate

Kr=4.3 m/d, Kz=0.6 m/d

Sy=0.3

Casing radius 0.15 m

No skin-effect

Solution: Moench -

drawdown in pump well

LT_007B

Kr=0.6 m/d, Kz=0.1 

m/d

Sy=0.3

Solution: Newman -

drawdown in obs well
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Case study 3 – corrected interpretation, 

deep pumping well

PW- deep

Solution: Moench -

drawdown in pump well

21

LT_037b

Solution: Moench -

drawdown in obs well
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Lower permeability

Case study 3 – corrected results and 

updated profile

• Upper Sands and Clays – 0.4 m/d

• Lower sands - up to 4 m/d, Sy is 

between 0.1 and 0.3

• Anisotropy coefficient is up to 10 

(not important)

• Mirrabooka aquifer has K similar to 

that of lower sands

Higher 

permeability

Description K horizontal K vertical Sy

Best fit Acceptable Best fit Acceptable Acceptable

Upper sands (Bassendean 

and GF formations)

7 5-15 1.75 1.8-3.5 0.1-0.3

Sands with silt and clay 1 0.5-1 0.15 0.15-0.3 0.1-0.3

Lower sands of Guildford 

formation

5.2 5.2-10.4 2 1-4 0.1-0.3

(Mirrabooka Aquifer) 20 15-20 7.5 5-10 0.1-0.3

Original Results

Updated Results



Analytical models for well system design. 

Principle of Superposition

S1

S2

S

Q1 Q2
Software

• EXCEL, 

• EXCEL+ any pump 

test interpretation 

software, 

• WINFLOW*, 

• AMWELLS

Standard numerical codes are not modelling drawdown in pumping 

wells correctly because:

• Grid/element size is not suitable

• Equations for well hydraulics, skin-effect, well and screen diameters 
etc. are not included

S=S1+S2

*http://www.scisoftware.com/products/winflow_overview/
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Open pit dewatering - wellfield design 

in EXCEL (gold deposit in CAF)
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Superposition formula: s – drawdown at any well or at any other point

T – transmissivity;

Q - pumping rate of a single well;

fi - a function that depends on boundary conditions

and well parameters
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A linear pit boundary, a linear contour of dewatering 

wells and  a linear contour of recharge at a 

distance R from a drainage line: 

r – distance from a pumping well 

R - Radius of Influence

S – storage coefficient; 

t – time from the beginning of pumping

Results: drawdown at a pit contour and inside 

each well for a specific Q. Helps to decide on 

number of boreholes and distances between 

them 24



ANSDIMAT AMWELLS

ANSQUICK

ANSRADIAL

ANSDIMAT

25



AMWELLS:

Model geometry, well locations
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AMWELLS:

Input of well systems – choice of layouts
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AMWELLS: Calculation of drawdown in 

each well
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AMWELLS: Piezometric maps and 

hydrogeological cross-sections
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AMWELLS:

Hydrodynamic boundaries

30

Choice of Dirichlet, Neumann or Cauchy boundaries 

(straight line boundaries only)



AMWELLS: Anisotropy
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AMWELLS: Heterogeneity
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AMWELLS: 3D animation movie
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Case study 4: Water supply borefield

Leningrad – St-Petersburg, 1946–2006
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Case study 4: model calibration and 

predicted drawdowns, 1946–2006
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Particle tracking
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Well catchments 

(wellhead protection areas)
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Impact of boundaries and heterogeneity 

on well catchments
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ANSRADIAL - finite-difference simulator 

of axisymmetric groundwater flow 

�when hydrogeological 

conditions are too complex 

to be modelled analytically. 

Typical applications: 

aquifer tests with 

simultaneous pumping from 

different horizons in multi-

layer aquifers

Pre- and postprocessor for 2-D numerical modelling codes:

• MODFE (USGS)

• RADFLOW (G.S. Johnson, D.M. Cosgrove, Idaho Water Resources 

Research Institute).
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Thank you for attention!

http://www.ansdimat.com/
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